Maternal diabetes up‐regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring
نویسندگان
چکیده
Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up-regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose-tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF-Akt (protein kinase B)-mammalian target of rapamycin (mTOR)-NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by in vivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose-induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF-Akt-mTOR-NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers.
منابع مشابه
Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischaemia-reperfusion injury.
Rats exposed to protein restriction as fetuses develop hypertension as adults. Hypertension increases the risk of myocardial ischaemia and infarction. We investigated whether rats exposed to low-protein diets in utero are more susceptible to myocardial ischaemia-reperfusion (IR) injury. Pregnant Wistar rats were fed control or low-protein (MLP) diets throughout pregnancy. At 4 and 8 weeks postn...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملThe Effects of Prenatal Protein Restriction on β-Adrenergic Signalling of the Adult Rat Heart during Ischaemia Reperfusion
A maternal low-protein diet (MLP) fed during pregnancy leads to hypertension in adult rat offspring. Hypertension is a major risk factor for ischaemic heart disease. This study examined the capacity of hearts from MLP-exposed offspring to recover from myocardial ischaemia-reperfusion (IR) and related this to cardiac expression of β-adrenergic receptors (β-AR) and their associated G proteins. Pr...
متن کاملEffect of losartan on NOX2 transcription following acute myocardial ischemia-reperfusion
Introduction: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (Nox2) is one of the predominant sources of ROS production during myocardial ischemia-reperfusion and can be induced by angiotensin II. The evidence suggests that pharmacological blockers of renin-angiotensin system can exert direct tissue effects independent of their ability to regulate blood pressure. The mechanism...
متن کاملLong-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion.
AIMS Adult offspring who are born intrauterine growth restricted (IUGR) are at risk of developing cardiovascular diseases during adulthood. Additionally, several cardiac diseases are associated with changes in myocardial energy metabolism. However, the potential long-term effects of being born IUGR on cardiac energetics are unknown. The aim of this study was to assess the long-term effect of IU...
متن کامل